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Recommender systems (RecSys) have been widely applied across E-commerce, finance, healthcare, and social media and have become
increasingly influential in shaping user behavior and decision-making, underscoring their growing impact across domains. Since
RecSys heavily relies on user data, its privacy concerns are significant and need to be addressed urgently. Recent studies on membership
inference attacks (MIAs) in RecSys highlight this need. MIAs aim to infer whether a user or an interaction record was used to train a
target ReSys model. The success of MIA can lead to severe privacy breaches, e.g., inferring users’ special lifestyles. MIAs in RecSys
have features distinct from other MIAs in classification models or large language models. However, no systematic survey on this topic
has yet been conducted. We present the first comprehensive survey on RecSys MIAs, exploring their taxonomy, design principles,
evaluation methods, and defense mechanisms. Based on the summary of existing studies in this area, we also outline several promising
future research directions. This survey will raise awareness of privacy risks among RecSys researchers, practitioners, and users, and
promote privacy protection practices in RecSys design.
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1 Introduction

Recommendation systems (RecSys) have seen significant advances over the past decade and are widely used across
various applications, such as job matching [11], e-commerce [10], entertainment [15], and social media [25]. Besides
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2 He et al.

advanced algorithm design and powerful computational resources, the availability of large datasets is another key
factor contributing to the success of RecSys [90]. As RecSys datasets often contain rich and highly sensitive personal
information, such as users’ purchase histories, browsing behaviors, watched movies or shows, search queries, clicked
items, social connections, demographic attributes (e.g., age, gender, location), and even implicit behavioral patterns (e.g.,
temporal activity or preference shifts), RecSys model owners must ensure such privacy-sensitive information is not
inadvertently leaked through model parameters, intermediate representations, or generated recommendations. However,
recent studies [12, 22, 24, 79, 82, 84, 91, 92] have shown that RecSys models are prone to memorizing information of
user data, making them vulnerable to several privacy attacks [7, 8, 17, 18, 21, 30, 32, 64, 86]. Among these attacks,
membership inference attacks (MIAs) are considered as the fundamental step to breach privacy, which aim to infer
whether a specific user or an interaction is included in the training data of a RecSys model.

The first MIA on machine learning was proposed by Shokri et al. [64] on several classification models that demon-
strated that an attacker can determine whether a data record was used to train an ML model solely from the prediction
vector of that record (i.e., with black-box access to the target model). Since then, a growing number of studies have
investigated MIAs across various domains, including computer vision [7], natural language processing [49, 58, 80], and
audio processing [63]. The research on MIAs in RecSys has started relatively late, compared to other domains. However,
since its impacts are more widespread, and RecSys MIA attacks have unique features distinct from other MIA attacks,
there is an urgent need to understand them and design mitigation methods.

Unique features.We list several unique features of RecSys MIAs as follows.

• The nature of RecSys leads to diverse MIA targets at different levels. So far, researchers have discussed the
attacks targeting the user level, the interaction level, and the social level, i.e., the connection between users.
These dimensions are not seen in other types of MIAs.

• Adversarial knowledge is different. Traditional MIA techniques rely on posterior probabilities, which are often
unavailable in recommendation settings. In practice, adversaries can only observe the ranked lists of items
produced by the RecSys, rather than the underlying prediction scores or confidence values.

• New attack vectors and system parameters. RecSys may use unique global information, such as user and item
embeddings. Its output setting, i.e., the number of recommended items, also introduces an additional layer of
complexity for attack design.

• RecSys has many different designs, such as matrix-factorization-based, graph-based, sequence-based, and feder-
ated RecSys. Each may impose unique challenges to MIAs, requiring particular attack designs.

Direct impacts on individuals. A privacy breach in RecSys also has great impacts on individuals due to the
widespread deployment and the large user base compared to other systems. For example, identifying that specific
purchase records were used to train an e-commerce RecSys may expose a user’s preferences or behavioral traits. Exposed
medicine recommendations may reveal sensitive medical conditions, such as HIV or syphilis, causing significant social
or psychological harm. The National Institute of Standards and Technology (NIST) formally classifies MIAs that reveal an
individual’s presence in a training dataset as a privacy and confidentiality violation [70], and such risks place substantial
regulatory pressure on RecSys providers under laws including GDPR [76], CCPA [1], and PIPL [2]. Recent real-world
incidents further underscore the severity of these threats: in 2023, a Spotify API exposure allowed unauthorized access
to users’ private playlists and listening histories, enabling unintended profiling, while in 2024, researchers showed that
TikTok’s “For You” algorithm could leak sensitive attributes, such as location, interests, and social ties, through latent
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embeddings. Together, these cases illustrate that even well-engineered recommendation systems may inadvertently
disclose personal information, undermining user trust and highlighting the urgent need for robust privacy defenses.

We present the first systematic survey that comprehensively summarizes existing membership inference attacks
and defense mechanisms in recommendation systems. Specifically, we establish a taxonomy of MIA approaches
across multiple dimensions and analyze their theoretical foundations, methodologies, evaluation protocols, emerging
challenges, and future research directions to guide the development of privacy-preserving RecSys. A closely related
survey, Hu et al. [31] in 2022, describes the MIAs in general, covering only one paper in RecSys MIA. Since then, more
unique features of RecSys MIAs have been explored, and thus, they deserve a dedicated, more systematic in-depth
analysis. Our extensive, up-to-date literature search and analysis are timely and address this urgent need. The main
contributions of this article are summarized as follows:

• Comprehensive Review. To the best of our knowledge, this is the first work to provide a comprehensive
review of membership inference attacks and related defenses on RecSys models. In this work, we establish novel
taxonomies of membership inference attacks and defenses, respectively, based on various criteria.

• Datasets and Metrics.We summarize the evaluation resources for MIAs on RecSys, including the commonly
used datasets, recommendation models, and evaluation metrics regarding each design principle. By providing
a clear mapping of these resources, we aim to help researchers select the appropriate tools to evaluate the
effectiveness of different MIA approaches.

• Challenges and Future Direction.MIAs on RecSys is an active and ongoing area of research. Based on the
literature reviewed, we have discussed the challenges yet to be solved and proposed several promising future
directions for MIAs designed on RecSys to inspire interested readers to explore this field in more depth.

• Online Updating Resource.We create an open-source repository1 that includes most, if not all, the relevant
work. This repository provides links to all papers and released code to help researchers interested in this area.
As a small number of the surveyed papers are only available as preprints, authors are welcome to update us
when the full publication information becomes available. We will continue to update the repository with new
work in this domain. We hope this open-source repository will shed light on future research on membership
inference analysis in RecSys.

The rest of the article is organized as follows: Section 2 introduces MIAs on RecSys preliminaries. Section 3 introduces
the existing attack approaches and provides taxonomies to categorize the released papers. In Section 4, we discuss
current defenses on RecSys MIAs. Section 6 discusses the challenges and proposes future directions. Section 7 concludes
this article.

2 Preliminaries

2.1 Recommendation System (RecSys)

Recommendation systems (RecSys) have undergone remarkable development over the past decade and have been
extensively deployed across a wide range of application domains, including job matching [11], e-commerce [10], and
online entertainment [15]. By analyzing and modeling complex user–item interaction patterns [25, 26, 61], RecSys can
accurately predict user preferences and deliver personalized recommendations, thereby enhancing user satisfaction,
engagement, and platform profitability.

1https://github.com/Richardwarriors/Membership-Inference-Attacks-on-Recommendation-System
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Early RecSys primarily relied on shallow models such as matrix factorization (MF), which represented users and
items in low-dimensional latent spaces to capture collaborative signals. However, as the scale and diversity of data grew,
traditional shallow models struggled to capture the nonlinear and heterogeneous nature of user behavior. This limitation
ushered in the deep learning era of RecSys, leading to the emergence of models such as NeuMF [26], LightGCN [25],
and SimpleX [50], which leverage neural architectures and graph structures to better represent complex user–item
relationships.

Recently, with the advent of large language models (LLMs), a new paradigm of LLM-based RecSys has emerged.
Representative frameworks such as P5 [16], M6-Rec [13], and TALLRec [5] integrate the powerful natural language
understanding and generative capabilities of LLMs to enhance recommendation quality, interpretability, and user inter-
action. These models signal a shift from feature-based to instruction- and context-driven recommendation generation.

However, as RecSys becomes increasingly large-scale, data-hungry, and ubiquitous in real-world applications,
ensuring its reliability, fairness, and privacy has become a critical research priority. User data in recommendation
systems often contains sensitive, personally identifiable information (e.g., purchase histories, viewing behaviors, social
links, and demographic traits), making these systems vulnerable to various privacy attacks. Among them, membership
inference attacks (MIAs) have received growing attention, as they enable adversaries to determine whether a user’s
data was included in a model’s training set—posing serious risks to user privacy and organizational trust.

In the following section, we present a detailed and systematic discussion of MIAs in RecSys, outlining their principles,
attack models, defense mechanisms, and open research challenges.

2.2 Membership inference attacks (MIAs).

Given a trained target model 𝑓 and a target record 𝑧, an adversary aims to determine whether 𝑧 was included in the
training dataset of 𝑓 . This can be formulated as a binary hypothesis testing problem:

𝐻0 : 𝑧 ∉ D vs. 𝐻1 : 𝑧 ∈ D,

where D denotes the training set. The adversary computes a decision statistic based on information obtained from
the target model—such as the output confidence[65], likelihood ratio[7], or training loss trajectory[38]—and compares
it against a threshold to decide between the two hypotheses. Intuitively, records that the model has previously seen
(members) tend to produce different output characteristics than unseen records (non-members), due to phenomena
such as model overfitting or memorization. Therefore, a membership inference attack (MIA) can be interpreted as a
model-based distinguishing attack that exploits these behavioral discrepancies to infer the presence of specific records
in the training data.

3 Membership Inference Attacks on Recommendation Systems

In this section, we first give a general definition of MIAs on RecSys and then introduce adversarial knowledge, attack
approaches, and target models. We will further explain in detail how the unique features of RecSys play in RecSys MIAs.

3.1 Definition of MIAs on RecSys

To better illustrate the definition of MIAs on RecSys, we introduce a typical framework of MIAs on RecSys, shown
in Figure 1. The attacker uses the designed MIA methods to attack the trained RecSys and the definition of MIAs on
RecSys is as follows: Given an exact input user information, an attacker infers whether the user information is used in
training data.
Manuscript submitted to ACM
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Fig. 1. The Framework of MIA in Recommendation System.

3.2 Threat Models

The amount and type of information available to an attacker critically determine the feasibility and strength of
membership inference attacks (MIAs) against recommendation systems (RecSys). In this section, we first formalize
the attacker’s knowledge and then describe black-box and white-box MIAs in the RecSys setting. Broadly speaking,
two classes of background knowledge are most relevant: (i) knowledge about the training data distribution, and (ii)
knowledge about the target model.

Knowledge about the training data distribution. It refers to the attacker’s understanding of the distribution from
which the model was trained. Many MIA formulations assume that the adversary can access or synthesize a shadow
dataset drawn from the same distribution as the target training data. This assumption is justified in practice: when
distributional statistics are available, the shadow dataset can be generated via statistics-based synthesis, whereas in
other cases, one may employ model-based synthesis techniques to approximate the underlying distribution [64]. For
nontrivial evaluation, it is typically assumed that the shadow dataset is disjoint from the target training set.

Knowledge about the target model It captures information about how the RecSys is trained and parameterized,
including posterior probability, and hyper-parameters (e.g., negative-sampling ratio).

RecSys raises an additional practical requirement not commonly emphasized in other domains: besides a shadow
dataset, many RecSys attacks assume access to an item-embedding generating (IEG) dataset that is disjoint from both
the target and shadow datasets. The IEG dataset is used to produce item embeddings for the full item catalog, a step
necessary because items are typically known a priori, even when user interaction traces are private. Requiring a
separate IEG dataset is a mild and realistic assumption—platforms and public catalogs make item descriptions readily
available—yet it materially affects attack design and transferability. Based on adversarial knowledge, we can characterize
the dangerous levels of existing attacks.

White-box Attacks. Under this setting, an attacker can get some inaccessible information and use it to attack a
target RecSys model. The information includes the posterior probability of the item and the learned parameters of the
target model.

Black-box s. In this case, an attacker can only have black-box access to a target model. The attacker is given
information limited to training data distribution, the user-interacted item set, and the recommended item set.
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Figure 2 illustrates the conceptual distinction between white-box and black-box MIAs on a target RecSys model.
A green tick (✓) indicates available information, while a red cross (✗) denotes inaccessible information. As shown,
the white-box adversary possesses access to detailed model internals, including learned parameters and posterior
probabilities, whereas the black-box adversary is restricted to external query responses and user interaction data.

Fig. 2. The Overview of white-box and black-box MIA in Recommendation System.

In the real world, obtaining access to model parameters or training configurations is exceedingly rare. Consequently,
most recent research on MIAs in RecSys focuses on the black-box setting, which better reflects realistic deployment
scenarios. The white-box setting, by contrast, is primarily explored in the context of Federated RecSys [82], where
parameter updates may be partially exposed to participating clients. In traditional centralized RecSys models, white-box
analyses are often used from a developer’s standpoint to assess privacy risk scoring [22] and proactively safeguard
users identified as privacy-sensitive.

Although black-box attackers operate with significantly less information, the fact that effective black-box MIAs can
still succeed underscores a critical vulnerability in modern RecSys. Demonstrating attack success under such limited
information further emphasizes the urgent need for robust privacy-preserving mechanisms in RecSys.

3.3 Taxonomies of Membership Inference Attacks on Recommendation Systems

To give readers a general picture of MIAs and help readers find the most relevant papers easily, we create a taxonomy
of MIAs on RecSys in Figure 3. In this taxonomy, we categorize all released MIA papers by attack strategy and target
model. Specifically, for papers in the target model level, we further categorize them by target ML model type, e.g.,
Matrix-factorization-based RecSys, Sequential RecSys, Graph-based RecSys, LLM-based RecSys, etc. For papers in the
attack strategies level, we further categorize them by specific attack levels, i.e., user level, interaction level, and social
level. For papers in the adversarial knowledge category, we further divide them into black-box and white-box attacks.
Lastly, for papers in the algorithmic level category, we further divide them based on whether the target models are
trained in a centralized or federated manner. Note that Figure 3 not only gives general taxonomies for MIAs according
to the above criteria, but also provides detailed characteristics for specific categorized papers.
Manuscript submitted to ACM
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Fig. 3. Taxonomy: Membership Inference Attack on Recommendation System.

3.4 Targets of Membership Inference Attacks on Recommendation Systems

Recommendation systems are inherently complex information-fusion systems that integrate diverse sources of user
and item data. As a result, they encapsulate multiple levels of privacy-sensitive information from the adversary’s
perspective. The training dataset for a RecSys typically contains rich, heterogeneous information, including user
attributes, behavioral histories, and social relationships. From these different aspects, adversaries can launch various
membership inference attacks (MIAs) targeting distinct forms of private information. From the user level, the adversary
observes the behavior of the target RecSys on member records (i.e., data points used during training) versus non-member
records (i.e., data points unseen during training) to infer whether a specific user was included in the training dataset.
From the interaction level, the focus shifts to user behaviors and preferences, which tend to be more sensitive. Here,
the attacker aims to infer whether a particular user–item interaction (e.g., a purchase, click, or rating) was part of the
training data, thereby revealing a user’s interests, preferences, or even daily habits. Finally, at the social level, which
arises in social or graph-based recommendation systems, the adversary attempts to exploit the collaborative filtering
or graph embeddings associated with recommended items to infer hidden social ties—such as whether two users are
connected in the underlying social network.

Overall, these three attack granularities—user-level, interaction-level, and social-level MIAs—represent the
principal dimensions along which privacy risks manifest in modern RecSys.

3.4.1 User-Level MIAs. Zhang et al.[84] were the first to propose the user-level membership inference attack in RecSys
based on item embedding differences, aiming to infer whether a user’s data was included in the training dataset of
the RecSys model. Under the black-box setting, the attacker can only observe the output recommendation list. The
item-embedding-based method assumes that if a user’s data is included in the training set, the recommended items
should be similar to the items the user has interacted with. In contrast, for non-member users, the system lacks
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knowledge of their preferences and therefore cannot generate personalized recommendations. In the original work, the
top popular items were used as the recommendations for non-members. To construct attack features, the embeddings
of the interacted items were averaged, and those of the recommended items were averaged; the difference between the
two was then used as the membership feature. A two-layer multilayer perceptron (MLP) was trained as the attack model
to distinguish members from non-members. However, this approach is unstable when the target and shadow datasets
differ. The reason is that the method implicitly assumes that item embeddings are generated by a fixed collaborative
filtering model. In practice, embeddings trained by different algorithms (e.g., BPR vs. NeuMF) can diverge in the latent
space even when trained on the same dataset. Furthermore, the item embeddings generated by the target and shadow
models may also exhibit discrepancies, which degrade attack performance. To address this issue, Wang et al. [79]
proposed a debiased learning MIA (DL-MIA) framework for RecSys that mitigates the embedding bias between the
target and shadow models. For DL-MIA, to overcome the limitations of Item Difference MIAs (ID-MIA), which suffer
from (i) a training-data bias—distributional gaps between shadow and target recommenders that make attack samples
generated by the shadow model poorly transferable—and (ii) an estimation bias—since the attacker cannot observe
hidden states (user/item embeddings), externally constructed difference vectors are noisy—the DL-MIA framework
explicitly debiases learning within the difference-vector paradigm. Concretely, it (1) builds difference vectors from
each user’s history and the system’s recommendation list; (2) employs a variational auto-encoder–based disentangled
encoder to separate recommender-invariant from recommender-specific features, narrowing the shadow–target gap
and mitigating training-data bias; (3) learns a truth-level score per difference vector as a sample weight to discount
poorly estimated features, thereby mitigating estimation bias; and (4) trains a member/non-member classifier (MLP) on
the disentangled, reweighted representations, optimized with an alternating training procedure. Empirically, DL-MIA
simultaneously reduces both biases and achieves state-of-the-art attack performance across general and sequential
RecSys.

Although subsequent experiments demonstrated that DL-MIA is more accurate and stable than the ID-MIA under
target–shadowmismatches, its effectiveness remains sensitive to the information exposed to the adversary—most notably
the dimensionality of item embeddings and the length of the top –𝐾 recommendation list. Empirically, performance
tends to improve with larger embedding dimensions and larger 𝐾 , whereas short lists (e.g., 𝐾 ≤ 10) often provide a
weak signal in practice. Moreover, obtaining the training dataset distribution is unrealistic. Chi et al[12]. proposed the
shadow-free MIA method to infer the membership without training the shadow model, compared with the previous
methods[79, 84, 92]. The intuition of the SF-MIA is to compare the recommended items with general popular items
(which can be obtained by creating an empty account). If the recommended items align more closely with popular
items, then it’s likely not a member. But if the recommended items have a higher similarity to the user’s historical
interactions, then it’ll be classified as a member. The experiment results show that this shadow-free approach not only
significantly reduces computational cost for MIAs but also reaches a comparable performance to previous shadow-
training approaches. At the same time, since the shadow model does not need to be trained, this method reduces
the attack’s time cost. However, the common assumption that non–member recommendations align with a globally
popular item set is brittle in the real world. The current sequential RecSys can provide personalized recommendations
for both member and non-member users. To address the member/non-member mode gap, Zhu et al.[92] propose
the Model Extraction based MIA (ME-MIA) for sequential recommenders, which first extracts a surrogate model via
black–box queries that align its recommended item set and rank order with the target using generic list–consistency
objectives, and then performs membership inference using the surrogate’s richer signals (scores, ranks, similarities).
ME-MIA targets sequential recommenders in a black-box setting by first extracting a surrogate model that imitates
Manuscript submitted to ACM
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the target’s top –𝐾 items and their rank order using two generic objectives—ranking consistency and positive-item
consistency—derived solely from recommendation lists. Because the surrogate’s training does not reveal membership
labels, a shadowmodel (trained with the same objective) is used to construct labeled data; rich signals from the surrogate
(scores, ranks, similarities) then feed a binary classifier for membership inference. To reduce data demands, ME-MIA
offers (i) a data-efficient variant that augments sequences by replacing actions with nearest-neighbor items in the
surrogate’s embedding space, and (ii) a data-free variant that synthesizes sequences autoregressively and queries the
target for soft labels, following data-free model-extraction practice. These steps yield effective, transferable attacks in
black-box sequential settings. While ME-MIA demonstrates that membership inference is possible even in data-free
settings, this comes at the cost of effectiveness; moreover, the role of item scoring in shaping attack success remains
underexplored, and it is unclear whether ME-MIA readily generalizes to non-sequential RecSys. Despite recent progress
at the user level, open challenges persist: how to design more efficient attacks, reduce confounding factors that obscure
the signal (e.g., embedding dimensionality, top –𝐾 , popularity effects), and accommodate the inherent heterogeneity of
recommender systems with model–agnostic methods. Beyond traditional RecSys MIAs, He et al.[24] (to our knowledge)
present the first user–level attacks for LLM–based recommender systems, proposing five attacks—Inquiry, Hallucination,
Semantic, Poisoning, and Contrast—that exploit LLMs’ memorization, text generation, and hallucination behaviors;
evaluated across multiple popular LLMs, these attacks demonstrate clear effectiveness in revealing whether specific
user were included in in–context prompts.

3.4.2 Interaction-level MIAs. RecSys poses privacy risks beyond the user level: in addition to concerns about whether
a user is included in the training set, one may also be interested in the presence or absence of specific user–item
interactions, referred to as interaction-level privacy. In this part, we focus on centralized RecSys, while the discussion
of Federated RecSys will be presented in Section 3.6. Compared to user-level privacy studies, research on interaction-
level privacy remains relatively limited. Although the privacy risks associated with interaction-level breaches are
often more severe, designing effective MIAs at this level is considerably more challenging, primarily because existing
embedding-difference-based methods are not directly applicable. To address the challenge of interaction-level MIA
on RecSys, Zhong et al.[91] firstly proposed interaction-level MIA called MINER on a knowledge-graph (KG)–based
RecSys, which is a framework that learns to infer whether a specific user-item interaction was included in the training
data by leveraging knowledge-enhanced embeddings and a bilateral-branch attack model. The intuition of MINER
is measuring the distance similarity metric between the interacted item and recommended item to infer the member
and non-member data. For ranked recommendation lists, MINER computes a discounted similarity score (DS) that
logarithmically weights higher-ranked items more heavily:

𝐷𝑆 (𝑖, 𝑖′) = 𝑑 (e𝑖 , e𝑖′ )
log2 (𝑟𝑖′ + 1) ,

where 𝑑 (·) denotes a distance function and 𝑟𝑖′ is the ranking of item 𝑖′ in the top-𝑘 recommendation list. Multiple
distance metrics (L1, L2, cosine, Bray–Curtis) are used, and their concatenation forms the feature vector x for each
user–item pair.

Considering the distribution of the item, the author thinks the personalized interacted item (non-popular item)
contains more sensitive information. For example, consider a healthcare RecSys. Determining whether a patient has
been treated (“interacted”) with HIV (a rare disease) carries greater sensitivity than discerning whether the user has been
treated with flu, a common disease. MINER introduces a bilateral-branch attack model with two sub-networks: a main

branch trained on the original long-tailed distribution and a regularizer branch trained on a re-balanced distribution,
Manuscript submitted to ACM
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which enables each branch to learn complementary knowledge from head and tail interactions, respectively. Through
this bilateral learning strategy, MINER effectively mitigates the influence of long-tailed distributions and achieves high
attack accuracy on both head and tail interactions.

However, while MINER targets the long-tail, it shows limited effectiveness in the low-FPR regime and its reliance on
KGs constrains applicability to other RecSys architectures. To address the model-agnostic constraint, He et al. [22] adapt
the Likelihood Ratio Attack (LiRA) [7] to the recommender systems setting and propose RecLiRA. The core idea is that
the posterior confidence distributions of member (IN) and non-member (OUT) samples exhibit measurable differences,
enabling privacy risk to be quantified through their statistical separability. For each shadow model, RecLiRA collects
confidence scores for IN and OUT samples and models them as Gaussian distributions. A statistic 𝑞 = |2𝑝 − 1| and its
logit transformation 𝜙 (𝑞) = log!

(
𝑞

1−𝑞

)
are then used to better distinguish between the two distributions. RecLiRA is

versatile and can be applied to both interaction-level and user-level membership inference attacks.
In addition to traditional RecSys, the development of LLM-based RecSys in recent years has also led people to pay

attention to the privacy issues associated with LLM-based RecSys. He et al.[24] pioneer interaction–level MIAs for
LLM-based RecSys, exploiting LLMs’ tendency to memorize prompt content through direct inquiry and contrast attacks,
underscoring practical risks for In-Context Learning RecSys.

3.4.3 Social-Level MIAs. Unlike user-level and interaction-level MIAs, which only require knowing whether a user or a
user’s interactions was included in the training dataset, Zhao et al.[89] introduces a social-level Membership Inference
Attack (SMIA) framework, which moves beyond traditional user- and interaction-level attacks to infer whether a social
link exists between two users in a social RecSys. The framework targets the inference of whether a user pair (𝑢1, 𝑢2)
has a social relation in the social graph 𝐺𝑆 of a social RecSys. The intuition is that users with social ties tend to have
higher similarity in recommendation lists or embedding space (i.e., social homophily), allowing inference of hidden
relationships. The attacker has black-box access to the target RecSys model𝑀target (i.e., only recommendation results),
and optionally a shadow social graph𝐺 ′

𝑆
. The adversary firstly collects the recommendation outputs (top-𝑘 lists) from

𝑀target for target users and forms a shadow interaction graph 𝐺 ′
𝐴
. This graph approximates how users are connected via

item recommendations. Then, using 𝐺 ′
𝑆
and 𝐺 ′

𝐴
, the attacker trains a dual-branch model:

• Shadow Social Preference Learner: takes the social graph𝐺 ′
𝑆
and computes user representations via a GCN, aiming

to capture social influence and homophily patterns (embeddings 𝐸𝑆 ).
• Shadow Behavioral Preference Learner: uses the interaction graph 𝐺 ′

𝐴
to extract user behaviors independently

(embeddings 𝐸𝐵 ).

The embeddings from both branches are then aggregated (e.g., concatenation, attention) to form a combined pair-feature
representation for any user pair. Finally, the attacker train the binary classifier to predict the 𝑦𝑢1,𝑢2 . If a social relation
exists between 𝑢1 and 𝑢2, 𝑦𝑢1,𝑢2 = 1, else 0. In short, SMIA reveals a previously underexplored privacy dimension
social-level inference in RecSys—by combining recommendation output analysis, shadow-model learning, and user-pair
classification to infer hidden social ties.

3.5 Membership Inference Attacks on different Recommendation System

3.5.1 Matrix-Factorization based RecSys. Matrix factorization–based RecSys (MF-RecSys) represent users and items
as low-dimensional latent vectors and predict user preferences through simple interactions (e.g., inner products) that
capture the co-occurrence structure within the user–item matrix. MF-based approaches have been widely adopted
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across domains such as movie recommendation, e-commerce, music, and news, and remain strong baselines for both
explicit-rating and implicit-feedback settings (e.g., BPR for pairwise ranking [61], LFM, and NeuMF [26]).

Zhang et al. [84] introduced the earliest membership inference attacks (MIAs) in the RecSys domain at the user
level, which directly apply to MF-style models. To mitigate distributional bias between the target dataset and shadow
dataset, Wang et al. [79] proposed a debiased learning MIA (DL-MIA) framework that reduces the discrepancy in
item embeddings generated by different methods. Although these MIAs demonstrated strong attack performance,
they depend on the construction of shadow or surrogate models, thereby increasing both the attack complexity and
computational overhead. To overcome these limitations, Chi et al. [12] proposed a shadow-free MIA (SF-MIA) that infers
membership directly without training a shadow model, achieving comparable performance to prior approaches. The
underlying intuition of these MF-based MIAs lies in analyzing the embedding differences between the interacted item set
and the recommended item set for member and non-member data. Building upon this direction, He et al. [22] designed
a LiRA-based interaction-level attack (RecLiRA) that achieves state-of-the-art true positive rates (TPR) at low false
positive rates (FPR) across common RecSys architectures. Moreover, they introduced a differential-privacy–inspired
privacy score, ln(TPR/FPR), to quantify interaction-level risk and aggregate it to the user level [23]. The intuition
behind RecLiRA is to leverage the posterior probability confidence differences between member and non-member data
to assess and exploit privacy vulnerability.

3.5.2 MIA on Sequential-based RecSys. Sequential-based RecSys aims to model users’ dynamic preferences by capturing
the temporal dependencies and ordering of their historical interactions. Unlike traditional collaborative filtering methods
that treat user–item interactions as unordered sets, sequential models leverage ordered interaction sequences to predict
the next item a user is likely to engage with. Sequential-based RecSys have been successfully applied in various domains
such as e-commerce [36], music streaming [27], and online content recommendation [73]. Early approaches employed
recurrent neural networks (RNNs) and gated recurrent units (GRUs) to model sequential patterns [28], while more recent
methods adopt self-attention mechanisms, such as SASRec [36] and BERT4Rec [68], to capture long-range dependencies
and contextual relationships between user actions. Similar to other deep neural architectures, sequential models may
inadvertently memorize sensitive user behavior, making them vulnerable to membership inference attacks (MIAs) that
exploit temporal behavioral discrepancies between training and non-training sequences. Wang et al. [79] proposed a
debiased learning MIA (DL-MIA) framework, which performs user-level membership inference by analyzing embedding
differences between members and non-members. Considering that attackers in real-world scenarios rarely have access
to the true distribution of training data, Zhu et al. [92] introduced the Model Extraction–based MIA (ME-MIA) for
sequential RecSys, which operates in a black-box setting by first extracting a surrogate model that replicates the target’s
ranking behavior and then utilizing the surrogate’s rich signals (e.g., scores, ranks, similarities) to train a binary classifier
for membership inference. ME-MIA further proposes data-efficient and data-free variants to reduce reliance on real
user sequences while maintaining high attack effectiveness and transferability.

Although these MIAs have achieved strong performance, they require additional shadow or surrogate models,
increasing attack complexity and computational overhead. To address this limitation, Chi et al. [12] proposed a shadow-
free MIA (SF-MIA) that infers membership without training a shadow model. SF-MIA determines membership by
comparing a user’s recommended items with general popular items—closer alignment indicates non-membership,
whereas higher similarity to the user’s historical interactions suggests membership. This shadow-free approach
significantly reduces computational cost while achieving performance comparable to shadow-model–based attacks.
In summary, the success of MIAs on sequential RecSys largely stems from the distinguishable embedding differences
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between the interacted item set and the recommended item set for members versus non-members, revealing the inherent
privacy vulnerability of temporal modeling in Sequential-based RecSys.

3.5.3 MIA on Graph-based RecSys. Graph-based RecSys model user–item interactions as graphs, where nodes represent
users or items and edges correspond to interactions such as ratings, clicks, or purchases. By leveraging the rich
relational structure inherent in these graphs, such models aim to learn high-quality embeddings that capture both
connectivity patterns and higher-order collaborative signals. Graph-based RecSys have achieved remarkable success in
modeling user preferences and item similarities through message-passing and neighborhood-aggregation mechanisms,
as demonstrated in representative models such as LightGCN [25], CKE [83], and KGAT [78]. These approaches extend
traditional collaborative filtering by propagating information along user–item bipartite graphs to capture multi-hop
dependencies.

Despite their effectiveness, the graph-based paradigm introduces new privacy risks. The learned embeddings
inherently encode users’ interaction behaviors and neighborhood relationships, which can be exploited by membership
inference attacks (MIAs). Yuan et al. [82] first proposed an interaction-level MIA on Federated RecSys, while Zhong
et al. [91] extended this idea to centralized RecSys. However, both of these studies focus solely on the interaction
level. More recently, Zhao et al. [89] discovered that edge connections between users can introduce a new form of
sensitive information leakage, termed social-level privacy risk. In this setting, the adversary’s objective shifts from
identifying individual user–item interactions to inferring social relationships among users—such as friendships, follow
links, or communication patterns—on social media platforms. The intuition behind social-level MIAs lies in the
distinguishable collaborative filtering patterns between members and non-members within the social graph, revealing
privacy vulnerabilities beyond traditional interaction-level attacks.

3.5.4 MIA on LLM-based RecSys. He et al. [24] introduced the first study of membership inference attacks (MIAs) on
large language model (LLM)-based RecSys. Their work focuses on In-Context Learning (ICL)-based RecSys, which
are widely adopted in conversational recommendation scenarios to address the user cold-start problem. The authors
designed five attack strategies that exploit the generalization, memorization, and reasoning capabilities of LLMs:
direct inquiry, contrast, semantic, hallucination, and poisoning attacks. Among these, the direct inquiry and contrast
methods can be applied to both user-level and interaction-level privacy settings. The attack intuition is the difference in
memorization degree between members and non-members on LLM.

3.6 Membership Inference Attacks against Federated Learning Recommendation System

Federated learning (FL) has recently emerged as an alternative to conventional centralized learning, where all training
data are pooled and a machine learning (ML) model is trained on this joint dataset. FL allows multiple parties to
collaboratively train an ML model in an interactive manner without directly sharing their raw data. It is an attractive
framework for training models on decentralized and privacy-sensitive data [52, 53]. However, the success of membership
inference attacks (MIAs) against FL has shown that FL may still reveal sensitive information and does not always
provide sufficient privacy guarantees. Melis et al. [54] introduced the first MIA against FL. Their study focused on a
text classification task, where the target models were recurrent neural networks equipped with a word-embedding
layer to transform inputs into low-dimensional vector representations through an embedding matrix. The embedding
matrix was treated as a parameter of the global model and collaboratively optimized. During training, the gradient of
the embedding layer is sparse with respect to the input words; for a given batch of text, the embedding is updated only
for the words that appear in the batch, while the gradients of all other words remain zero. The attacker can thus observe
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non-zero gradients to infer which words occur in the training data. Although MIAs have been widely investigated and
achieved remarkable success in federated classification tasks [54], the existing attack and defense approaches cannot be
directly applied to federated recommender systems (Federated RecSys) due to the significant architectural differences
between federated classification and Federated RecSys.

Fig. 4. The Overview of Federated Recommendation System.

For better understanding, the framework of a typical Federated RecSys is illustrated in Figure ??. Ammad et al. [75]
proposed the first Federated RecSys framework based on collaborative filtering, which has inspired many subsequent
studies. For example, FedFast [55] aimed to accelerate the convergence of Federated RecSys training, while Imran
et al. [33] and Wang et al. [77] focused on improving the efficiency of Federated RecSys. With the rapid progress
achieved in a short period, a few recent studies have begun to examine whether Federated RecSys are indeed “safe.” For
instance, [87] was the first work to analyze the privacy issues in Federated RecSys; it mainly discussed the leakage of
sensitive attribute information and proposed an effective protection approach. Although several works [44–46] have
studied user information leakage and corresponding defenses in Federated RecSys, the first and only study of MIAs on
Federated RecSys was conducted by Yuan et al. [82].

The main challenges of designing MIAs on Federated RecSys arise from two aspects. First, regarding the attack
objective, MIAs in federated classification aim to determine whether a given sample has been used in the federated
training process and which client has used it for local training. However, in Federated RecSys, the set of items
associated with each client can be easily inferred by checking which item embeddings are updated by that client.
Nevertheless, this information alone is not meaningful, since the item set contains both positive and negative samples
(i.e., interacted and non-interacted items), and only positive samples reveal users’ private preferences. Second, from the
attack implementation perspective, MIAs in federated classification often rely on extra i.i.d. data, which is infeasible in
Federated RecSys. Moreover, the architecture of Federated RecSys is fundamentally different from that of federated
classification models: each client in Federated RecSys maintains private parameters (i.e., user embeddings), whereas in
federated classification all model parameters are shared among clients.
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Yuan et al. [82] conducted the first systematic study of white-box interaction-level membership inference attack on
Federated RecSys (IFed-MIA) where a curious-but-honest central server attempts to infer a user’s private interaction
set V+

𝑖 . The server is assumed to have access only to the public parameters V𝑡
𝑖 uploaded by each client and basic

hyperparameters (e.g., learning rate and negative sampling ratio), without direct access to user embeddings or local
data. By analyzing which item embeddings are updated during local training, the server can infer which items a user
has interacted with, but cannot distinguish whether those interactions are positive or negative. To infer the actual label
𝑟𝑖 𝑗 of each interaction, the attacker leverages an empirical distance principle: given three locally trained models—𝑀𝑖 on
the true dataset D𝑖 , 𝑀 ′

𝑖 on D𝑖 with different initialization, and 𝑀 ′′
𝑖 on a reversed dataset D 𝑗

𝑖
where 𝑟𝑖 𝑗 is flipped—it

consistently holds that dist(v𝑗 , v′𝑗 ) < dist(v𝑗 , v′′𝑗 ). Hence, comparing embedding distances enables the attacker to infer
whether an item is positively rated.

Since the server does not know the true ratings in D𝑖 , Yuan et al. constructed a synthetic dataset Dfake
𝑖 by randomly

assigning ratings to updated items according to the known negative sampling ratio (e.g., 1:4). The attacker then trains a
fake local model𝑀 fake

𝑖 on Dfake
𝑖 and compares item-embedding distances between V𝑡

𝑖 and Vfake
𝑖 . Items with the smallest

distances are labeled as positive, and the process iterates until the target ratio of positive samples is met. The entire
inference procedure can be executed asynchronously on the server side without interrupting the standard federated
training process. Experimental results on Fed-NCF and Fed-LightGCN show that IMIA achieves over 90% accuracy in
predicting user–item interactions across multiple datasets, revealing that even without access to private embeddings
or raw data, Federated RecSys remain highly vulnerable to fine-grained interaction-level privacy leakage. However,
training hyper-parameters such as the negative sampling ratio are typically not observable to an external adversary in
practice, it remains to be seen whether IFed-MIA can be effectively used in real-world offenses.

4 Defense Mechanisms

Although the research on membership inference attacks (MIAs) for RecSys is growing, effective defenses remain
relatively underdeveloped. We categorize the existing defenses against RecSys MIAs into: proactive vs post-hoc
approaches. In proactive approaches, model owners integrate privacy protection methods into RecSys modeling and
system development, often at the cost of utility loss. The representative methods are differential privacy, regularization,
and popularity randomization. In contrast, post-hoc mechanisms take utility as the first priority and try to meet the
privacy requirements afterwards, including privacy risk estimation, and machine unlearning.

4.1 Proactive Methods

The proactive methods are dominated by differential privacy, while a few studies have also used regularization methods
to address the model overfitting problem, which is believed to be the root cause of MIA.

4.1.1 Differential Privacy. Differential privacy (DP) [3] is a rigorous probabilistic mechanism that provides information-
theoretic guarantees of privacy: when a machine learning model is trained under a suitably small privacy budget, it
cannot reliably learn or remember any single user’s data if the privacy budget is sufficiently small. The definition is
that A (possibly randomized) mechanism𝑀 is said to satisfy (𝜀, 𝛿)-differential privacy (DP)[3, 35, 56] if, for all pairs of
adjacent datasets D and D′ differing in exactly one record, and for all measurable output events 𝑆 , the following holds:

Pr[𝑀 (D) ∈ 𝑆] ≤ 𝑒𝜀 Pr[𝑀 (D′) ∈ 𝑆] + 𝛿. (1)
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This inequality ensures that the inclusion or exclusion of any single record has only a limited effect on the mechanism’s
output distribution, thereby providing a rigorous privacy guarantee. Furthermore, the MIA effectiveness level can be
theoretically linked to and bounded by the privacy budget of DP, 𝜀, as shown in later discussion, which is the unique
strength of DP.

In the context of RecSys, DP has been applied to mitigate membership inference attacks (MIAs) by adding calibrated
noise to inputs, gradients, or model outputs [89, 91]. Local differential privacy (LDP) is a client-side variant in which
each user independently perturbs their data or model updates before transmitting them, thereby protecting against
server-side inference. In federated RecSys, for instance, LDP has been evaluated as a defense strategy against interaction-
level MIAs [82], showing that unless extremely large noise is applied the attacker’s accuracy remains high, while
excessive noise severely degrades recommendation performance. These findings highlight a fundamental trade-off:
although DP and LDP offer formal membership-privacy guarantees, their practical deployment in RecSys is constrained
by the privacy–utility dilemma. For example, while using LDP on a federated recommendation system reduces the
effectiveness of attacks by up to 67%, it also decreases the recommendation accuracy by 65% [82]; on a centralized
recommendation system, when the defense effectiveness reaches 40%, the model performance drops by 90%. Designing
defense mechanisms that preserve recommendation quality while providing tangible membership-privacy protection
thus remains a critical open problem.

4.1.2 Regularization. Regularization aims to reduce the overfitting degree of target models to mitigate MIAs. Therefore,
regularization methods that can reduce the overfitting of ML models can be leveraged to defend against MIAs. Existing
regularization methods, including L2-norm regularization, dropout [67], data argumentation, model stacking, early
stopping, label smoothing [69], adversarial regularization [57], and Mixup + MMD (Maximum Mean Discrepancy) [39],
have been proposed and investigated as defense methods against MIAs in other fields [7, 51, 64, 66].

However, the study of using regularization as a defense method in RecSys is limited. Zhong et al. [91] firstly proposes
regularization via gradient-level learning (RGL). The key idea is to introduce a regularization term into the target RecSys
training objective to reduce the distinguishability between member and non-member samples from the perspective
of the surrogate attacker. The regularization term is defined using the Kullback–Leibler (KL) divergence between the
probability distributions of attack predictions for members and non-members. By penalizing the discrepancy between
these distributions, RGL effectively mitigates the information gap exploited by MIAs and increase the defense efficiency.
For example, RGL can increase the defense efficiency up to 37.8% under MINER attack.

In the domain of social RecSys[89], memorization of training data can inadvertently expose sensitive social relation-
ships between users via recommendation outputs. Unlike many other application areas, social RecSys relies critically
on user-to-user links to enhance recommendation quality. To mitigate this risk, the concept of Socially Adversarial
Learning (SAL) has been developed specifically for the recommendation field. Under SAL, a surrogate attacker A′ is
embedded into model training: the attacker learns to distinguish user pairs (𝑢1, 𝑢2) that share a social link (U+) from
those that do not (U−). The RecSys is then optimized with the combined objective

Lall = Lrec + 𝜆Ldef ,

where

Ldef = Dis
(
A′ (U+), A′ (U−)

)
≈
√︁
(𝜇+ − 𝜇−)2 + (𝜎+ − 𝜎−)2,
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in which 𝜇+, 𝜇− and 𝜎+, 𝜎− denote the means and standard deviations of the surrogate attacker’s output distributions
for linked and non-linked user pairs, respectively. By minimizing this divergence term, SAL forces user-pair embeddings
and recommendation outcomes for socially linked and unlinked users to become indistinguishable — thereby reducing
the risk of social-relationship leakage.

Except for centralized RecSys, regularization has been used in Federated RecSys to protect user privacy information.
To defend against interaction-level MIAs in Federated RecSys, Yuan et al. [82] proposed a regularization-style update
control mechanism. Observing that user embeddings change little during training and that the public parameter updates
from each client can leak membership signals, the approach augments the client-side optimization objective with a
penalty term:

L = Lrec + 𝜇 ∥𝑉 𝑡 −𝑉 0∥,

where Lrec denotes the standard recommendation loss, 𝑉 0 is the client’s initial public parameter vector, 𝑉 𝑡 is the
uploaded parameter update at round 𝑡 , and 𝜇 is the regularization strength. By constraining clients’ updates from
drifting far from the initial state, the defense reduces the distinguishability of members versus non-members that an
attacker can exploit, while preserving recommendation utility more effectively than straightforward local differential
privacy (LDP) noise addition.

While regularization-based defenses have received more attention in recommendation systems than differential
privacy, they still inevitably involve a trade-off between privacy protection and recommendation utility. For instance,
RGL improves defense effectiveness by up to 37.8%, but this gain comes at the cost of a substantial utility drop of
up to 12.7%. Similarly, SAL enhances defense efficiency by up to 6.0%, yet reduces model performance by as much
as 9.7%. These results highlight a fundamental limitation of regularization-based defenses: improving robustness
against membership inference attacks often comes at the expense of degrading recommendation quality. Designing
regularization techniques that effectively address the MIA threat, while minimizing utility loss, remains a critical open
challenge.

4.1.3 Popularity Randomization. To mitigate membership inference attacks in RecSys, Zhang et al. [84] propose a
defense mechanism called Popularity Randomization. The core idea is that non-member users are typically recommended
the most popular items, making their latent feature vectors unusually similar and therefore easily distinguished from
members. To counter this weakness, the system expands the candidate pool of popular items for non-members and then
randomly selects a subset for recommendation, thereby increasing randomness in non-members’ outputs. Formally,
when issuing recommendations to non-member users, instead of always selecting the top-𝑘 popular items, the method
chooses a larger set of top-𝑁 popular items and randomly picks 𝑘 items from within that set. This randomization breaks
the deterministic mapping of non-members to the most popular items and reduces the similarity in feature vectors
between non-members and members, thereby lowering the distinguishability exploited by the attack. However, this
defense is vulnerable to attacks that assume non-members receive recommendations dominated by globally popular
items. Modern RecSys can effectively address cold-start issues, meaning that even non-members often obtain reasonably
personalized recommendations. As a result, the underlying assumption of this defense may not always hold in practice.
Moreover, recent MIA studies have demonstrated that personalized recommendations themselves can leak sensitive
user information [92]. Therefore, the practical feasibility of this defense strategy remains uncertain.
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4.2 Post-hoc Methods

Post-hoc methods aim to preserve utility first and meet the privacy requirements later. It avoids interfering with the
modeling process, and thus fully preserves model utility before the system is deployed. Under this approach, the model
owner conforms the privacy laws, e.g., providing the required security measures and following the data minimization
principle, and responds to users’ “right to be forgotten” requests after the system is deployed. When users request
removing their data from modeling, a procedure calledmachine unlearning is often used. In addition to that, the concept
of privacy risk estimation is introduced to allow both users and the model builder to learn the privacy risk of each
contributed item, which may be used to decide data items to be removed. Due to the fully preserved utility, post-hoc
methods might be more accepted in practice.

4.2.1 Machine Unlearning. Unlearning has become a widely adopted post-hoc defense method, enabling model owners
to meet users’ privacy requests after deployment. Following the notion of unlearning principles [59], we further
categorize recommendation unlearning techniques into exact unlearning and approximate unlearning, depending on
whether the method fully or partially removes the influence of a user’s data from the trained model.

Exact Unlearning. Exact unlearning follows a strict and complete definition of machine unlearning, aiming to fully
eliminate the influence of designated data samples at the algorithmic level. Inspired by the SISA method [6], most exact
recommendation unlearning methods adopt the ensemble retraining framework. This framework partitions the original
dataset into multiple subsets, trains a sub-model on each subset, and aggregates these sub-models to form the final
predictor—similar to an ensemble learning pipeline. To guarantee algorithmic completeness, each sub-model is typically
designed to be identical to the original model in terms of architecture, hyper-parameters, and training configurations.
This design enables efficient unlearning: when a user submits an unlearning request, only the sub-model trained on
the subset containing the target data needs to be retrained, avoiding full retraining of the entire dataset and thereby
substantially improving efficiency.

Building upon SISA, Chen et al.[9] propose RecEraser, which introduces two key modifications tailored to recom-
mendation tasks. First, RecEraser employs a balanced clustering module for dataset partitioning, grouping similar
users or items into the same subset so as to preserve collaborative effects—unlike the random partitioning strategy
used in SISA. Second, RecEraser incorporates an attention-based aggregation network that learns adaptive weights
for combining sub-models. Compared to uniform averaging or majority voting in SISA, this weighted aggregation
significantly improves recommendation performance. Despite its advantages, the ensemble retraining framework faces
a fundamental trade-off between unlearning efficiency and model utility in recommendation settings. Increasing the
number of data partitions improves unlearning efficiency, but it also weakens collaborative signals, thereby degrading
recommendation quality.

To preserve more utility, Li et al. [41] propose UltraRE, a lightweight extension of RecEraser. UltraRE introduces
a novel balanced clustering algorithm based on optimal transport theory, improving both clustering quality and
computational efficiency. Furthermore, UltraRE simplifies the attention module by replacing it with a logistic regression
model, further enhancing overall efficiency.

Also, aiming to preserve more model utility, LASER adopts sequential training instead of parallel training during
model aggregation [43]. Sequential training processes sub-models one after another, which helps preserve cross-subset
collaborative patterns that may be lost during parallel training. LASER additionally integrates curriculum learning to
optimize the ordering of data subsets, further enhancing predictive performance. However, sequential training inevitably
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reduces unlearning efficiency. To address this, LASER incorporates early stopping and parameter manipulation strategies
to shorten retraining time while maintaining unlearning completeness.

Exact unlearning provides strong privacy guarantees by ensuring that all traces of targeted user data are completely
removed from the training process, thereby eliminating their influence on the final model.

Approximate Unlearning. Exact unlearning requires the presence of the entire training data, which is expensive to
maintain and may not be available in a running system. Approximate unlearning aim to approximate the effect of exact
unlearning. These approaches operate either from a parametric perspective, directly manipulating model parameters,
or from a functional perspective, fine-tuning the model so that its behavior resembles that of a model retrained without
the forgotten data.

A major class of parametric approaches is reverse unlearning[42, 85, 88], where the influence of the target data is esti-
mated and subtracted from the model parameters. Influence-function-based methods estimate this effect using gradient
and Hessian information, providing a closed-form update that avoids additional training. However, in recommendation
systems with high-dimensional user–item embeddings, these methods face significant computational overhead and
may suffer from estimation inaccuracies. To mitigate this, recent work selectively computes influence only for target
embeddings or prunes less important parameters to reduce the cost. From a functional perspective, active unlearning
methods fine-tune the model toward an unlearned solution. Representative approaches include fine-tuning on retained
data[48] and using flipped losses for forget items[4]. These methods are faster than exact retraining and can be applied
to an already trained model, but lack theoretical guarantees because their performance depends heavily on optimization
stability and the design of the fine-tuning objective.

Overall, approximate unlearning offers greater efficiency and is more practical for large-scale RecSys, but its reliability
regarding privacy protection has been questioned [19].

4.2.2 Privacy Risk Estimation. Unlearning provides a principled mechanism for ensuring user privacy by enabling the
complete removal of a user’s data from the training corpus. From the user’s perspective, this capability aligns with
the “right to be forgotten,” allowing individuals to request that their personal information be permanently deleted
from the model’s training set. From the company’s perspective, however, a central challenge lies in systematically
quantifying the privacy risk associated with retaining or removing specific user data. In this context, He et al.[22]
introduced the privacy risk score that offers a formal measure of how much sensitive information a model may
inadvertently reveal about a user’s data, thereby providing a quantitative foundation for evaluating and enforcing
privacy guarantees in machine learning systems. The privacy risk score is inspired by the differential privacy. In Eq. (1),
under the hypothesis-testing interpretation of differential privacy, let 𝑆 denote the rejection region used by an arbitrary
statistical test (or distinguisher) attempting to decide whether the mechanism’s output originated from D or D′. If
TPR and FPR represent the true and false positive rates of this test, respectively, then the privacy guarantee in Eq. (1)
imposes the following constraint on the achievable tradeoff between them:

TPR ≤ 𝑒𝜀 FPR + 𝛿, (2)

and symmetrically with the roles of D and D′ swapped.
Equation (2) provides an intuitive ROC-curve interpretation of differential privacy: a smaller (𝜀, 𝛿) pair uniformly

bounds the distinguishing power of any potential adversary, thereby limiting the success probability of all membership
inference attacks (MIAs) against the mechanism. Note that 𝛿 is often very small, and thus, can be safely removed from
Eq. 2.
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Interpreting Eq. (2) from a pointwise perspective naturally leads to the notion of an empirical indistinguishability

level for a specific record 𝑧, without the DP mechnism is applied. For a fixed trained model instance, a calibrated and
sufficiently powerful membership inference attack (MIA) yields empirical values of (TPR, FPR) at a chosen operating
point. Rearranging Eq. (2) then motivates the definition of a sample-specific privacy score [22]:

𝜀𝑧 ≈ log
(

TPR
max{FPR, 𝜖num}

)
,

where a small 𝜖num ensures numerical stability. Intuitively, 𝜀𝑧 quantifies the empirical privacy leakage of an individual
record: higher values indicate that the record is easier to distinguish between membership and non-membership, and
thus more privacy-sensitive for that model instance.

In the context of RecSys, MIAs instantiate this principle at various granularities—user-level and interaction-level—by
leveraging observable signals such as predicted scores, item ranks, or conversational traces. Consequently, such calibrated
MIAs provide a practical, per-sample proxy for assessing privacy risk in RecSys, aligning empirical vulnerability
measurement with the formal hypothesis-testing interpretation of differential privacy. The model owner can use this
privacy risk score as a guiding instruction to remove the sensitive data from their training data to achieve the defensive
purpose. Similar to the taxonomies of attacks, we also give readers a general picture of membership inference defenses
to help readers find the most relevant papers easily. The taxonomy of membership inference defenses in illustrated in 5.
In this taxonomy, we categorize all released papers of membership inference defenses into two main categories, i.e.,
proactive and post-hoc based defenses. For the papers under each of the categories, we further divide the papers based
on the specific defense approach, enabling the readers to find the most relevant papers.

Fig. 5. Taxonomy: Membership Inference Defense on Recommendation System.

5 Evaluation

Building upon the aforementioned design principles, the evaluation of Membership Inference Attack (MIA) performance
in RecSys primarily centers on three fundamental metrics: the Area Under the Receiver Operating Characteristic Curve
(AUC), the F1-score, and the True Positive Rate (TPR) to False Positive Rate (FPR) ratio. Each of these metrics serves a
distinct yet complementary role in characterizing the attack’s discriminative capability, robustness, and real-world
applicability. In this section, we present a comprehensive overview of the evaluation methodology, encompassing the
benchmark datasets, representative recommendation models, and standardized performance indicators commonly
adopted in empirical studies of MIAs on recommendation systems.
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5.0.1 Datasets. MIA methods on RecSys use the same datasets as other recommendation tasks. We list the widely used
datasets and summarize the statistics in Table 1.

MovieLens[20] The MovieLens dataset is one of the most widely adopted and benchmarked datasets in recommender
system research. It comprises user–movie rating interactions and is available in multiple versions that differ in scale. The
numeric suffix in each version denotes the approximate number of rating records it contains; for instance, MovieLens-1M
includes about 1M user–item interactions.

Amazon[29] The Amazon dataset comprises multiple domain-specific subsets categorized according to product
types available on the Amazon platform. Each sub-dataset contains user reviews and metadata related to a particular
product category. For instance, ADM, Beauty, Book, and Cell Phone represent the sub-datasets corresponding to Digital
Music, Beauty products, books, and communication equipment, respectively.

LastFM The LastFM dataset is a music listening dataset collected from the Last.fm online music platform. It contains
user–artist interaction records, such as listening histories and play counts, and is widely used for evaluating music
recommendation and user preference modeling tasks.

Steam[71] The Steam dataset was collected from Steam, one of the world’s largest digital distribution platforms for
PC games. It contains detailed user–game interaction records, including transaction data such as game purchases and
playtime durations. Among its various releases, Steam-200K is a widely adopted subset that serves as a benchmark for
evaluating recommendation models in gaming-related domains.

Ta-feng [14] The Ta-Feng dataset is a supermarket transaction dataset collected from a retail chain in Taiwan. It
records detailed purchase histories, including user IDs, product IDs, quantities, and timestamps. Due to its sequential
and temporal characteristics, it is widely used for sequential recommendation and next-item prediction research.

Yelp18[34] The Yelp dataset was originally compiled for the Yelp Dataset Challenge and contains users’ reviews of
restaurants. The company Yelp3 is a platform that publishes crowd-sourced reviews of restaurants. which is a chance
for students to conduct research or analysis on Yelp’s data and share their discoveries. A cleaned subset of Yelp reviews
with user–business interactions and ratings, used for recommendation and review analysis.

Ciao[72] The Ciao dataset was collected from the Ciao online product review platform, which allows users to rate,
review, and socially interact with other users. It contains rich user–item interactions along with explicit social relations
(e.g., trust networks), making it well-suited for evaluating social recommendation models. Each record includes user
ratings, product metadata, and user trust links, enabling comprehensive analysis of both behavioral and social influence
factors in recommendation tasks.

Flickr2 The Flickr dataset was extracted from the Flickr social image-sharing platform and includes users’ interactions
with images (e.g., favorites, comments, or tags), as well as the underlying user–user social connections. It provides a
representative benchmark for studying socially-aware recommendation systems, as it integrates both content-based and
social network information, reflecting real-world scenarios where user preferences are shaped by social relationships
and shared media interests.

5.0.2 Models. To verify the effectiveness of the proposed methods, MIAs are often evaluated on various popular RecSys
models. We list the widely used RecSys model structures as follows:

ICF[62] calculates the similarity between items aiming to find the ones which are closed to users’ likes.
LFM[37] builds a latent space to bridge user preferences and item attributes.
NCF[26] A key collaborative filtering model that leverages neural network architectures.

2https://www.flickr.com/
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Table 1. Statistics of widely used datasets for MIAs on RecSys.

Dataset User # Item # Interaction #

MovieLens-100K[20] 943 1,682 100,000
MovieLens-1M[20] 6,040 3,706 1,000,209
Yelp[34] 1,987,897 150,346 6,990,280
Ta-Feng[14] 32,266 23,812 817,742
Amazon-Digital Music[29] 100,952 70,519 130,434
Amazon-Beauty[29] 631,986 115,709 701,528
Amazon-Book[29] 10,297,355 4,493,336 29,475,453
Amazon-Cell Phone[29] 11,598,197 1,623,399 20,812,945
LastFM 23,566 48,123 1,474,122
Steam[71] 12,393 5,155 200,000
Ciao[72] 7,375 99,746 278,483
Flickr2 3,074,947 41,278,715 187,168,754

LightGCN[25] A state-of-the-art collaborative filtering model that simplifies graph convolution networks to enhance
recommendation performance.

GRU4Rec[28] is a session-based recommendation model that uses Gated Recurrent Units (GRUs) to model a user’s
short-term click sequence and predict the next item. It’s typically trained with pairwise ranking losses (e.g., BPR/TOP1)
and negative sampling, handling variable-length sessions efficiently.

BERT4Rec[68] utilizes deep two-way transformer to model the sequence of user behavior, exhibiting excellent
performance in multiple tasks.

STAMP[47] not only captures the user’s general interests but also preserves the user’s current preference through a
new short-term memory priority.

NARM[40] consists of a global encoder and a local encoder. The latter encoder combined attention mechanism to
attend large or small weights for different items.

CKE[83] Collaborative Knowledge base Embedding integrates a knowledge graph into matrix-factorization by
jointly learning user/item embeddings with KG structural/semantic regularizers (e.g., TransE/semantic embeddings),
improving cold-start and representation quality.

KGAT[78] Knowledge Graph Attention Network propagates user–item preferences over a KG with high-order
neighbor aggregation via attention, then performs end-to-end recommendation with the KG-enhanced embeddings.

ECFATCommonly cited as Explainable Collaborative FilteringwithAttentive Transfer, it transfers item attribute/auxiliary
information into CF via attention mechanisms to provide interpretable recommendations and better generalization

DiffNet++[81] A social recommendation model that iteratively diffuses user and item signals over the user–item
bipartite and social graphs, capturing high-order social influence and preference propagation for improved link
prediction.

DESIGN[74] A social recommender that performs denoising/self-supervised learning on social graphs (and possibly
user–item graphs) to reduce social noise and enhance representations before prediction.

GDMSR[60] Graph Denoising basedMulti-relational Social Recommendation leverages denoising objectives on social
and interaction graphs to mitigate noisy/irrelevant relations while learning multi-relational user/item representations
for recommendation.
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5.0.3 Metrics. To verify the effectiveness of these MIAs, they are seen as binary classification to be evaluate. We
summarize the common evaluation metric.

Attack Success Rate (ASR) ASR is defined as:

ASR =
# Successful Attacks

#All Attacks
.

A higher ASR indicates that the attack can more effectively distinguish members from non-members, reflecting stronger
attack capability.

AUC (ROC-AUC).[79, 84, 89, 92] Area under the ROC curve; a threshold-independent summary of performance
across all decision thresholds and interpretable as the probability that a randomly chosen positive is scored higher than
a randomly chosen negative.

F1-score.[82] Harmonic mean of precision and recall:

F1 =
2 Precision · Recall
Precision + Recall

,

balancing both types of errors into a single score in [0, 1].
TPR / FPR.[23, 91]

True Positive Rate(TPR) =
TP

TP + FN
, False Positive Rate (FPR) =

FP
FP + TN

.

TPR measures coverage of actual positives; FPR measures the rate of false alarms among actual negatives.
Advantage.[24] Advantage is a simple transformation of the attack classifier’s accuracy:

Advantage = 2
(
1 − Accuracy

)
.

Here, Accuracy ∈ [0, 1] is the fraction of correctly classified cases (member vs. non-member). Thus, Advantage =

2(1 − Accuracy) equals twice the error rate: larger values indicate lower attack accuracy (i.e., stronger privacy), while
smaller values indicate a more effective attack.

6 Discussion and Future Directions

In this section, we discuss several main challenges and potential research opportunities in MIAs on RecSys to inspire
interested readers to explore this field.

6.1 Adversary modeling

In practical scenarios, black-box RecSys models most closely reflect the adversary’s perspective, where attackers
can exploit only limited external information to compromise user privacy. The existence of such feasible black-box
attacks significantly undermines user trust in service providers and poses long-term risks to corporate reputation
and sustainability. Therefore, while the community continues to explore potential attack strategies and quantify the
privacy risks associated with black-box models, equal emphasis should be placed on developing effective defense
mechanisms. Given that even the most rigorous differential privacy (DP) approaches often lead to substantial utility
degradation—rendering them less attractive for real-world deployment—future research should focus on designing
adaptive and lightweight defense frameworks that balance privacy protection with model performance and business
applicability.

In contrast, white-box settings assume that attackers have access to a model’s internal parameters, gradients, or
architecture, which is rarely achievable in practice. Nonetheless, white-box analyses provide valuable insights from the
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enterprise’s perspective by quantifying internal privacy leakage and informing proactive protection strategies. The
recently proposed notion of privacy risk scores, which links membership inference attacks (MIAs) with differential
privacy theory, offers a promising avenue for enterprises to identify and “preemptively unlearn” privacy-sensitive
users or interactions before deployment. Developing more efficient and interpretable methods for estimating such risk
scores—while ensuring minimal performance compromise—represents a compelling future direction toward achieving
privacy-preserving yet high-utility RecSys.

6.2 Importance of interaction-level MIAs

Unlike user-targeted MIAs, which concerns whether a particular user is included in a dataset, interaction-level privacy
concerns whether specific user-item interactions (e.g., a user’s click, purchase, or rating) were used in training a RecSys.
This more granular form of privacy highlights a previously under-explored vulnerability in modern RecSys (e.g., RecSys
on social media and e-commerce) and underscores heightened user concern when private or sensitive interactions are
exposed. For instance, while merely knowing that a user is present in a system’s training data may often be trivial (e.g.,
“someone uses Amazon”), inferring that a particular purchase or specific click-stream event was included is far more
difficult and yet potentially far more revealing.

Current research on interaction-level privacy remains nascent, focusing primarily on federated RecSys, knowledge-
graph-based systems, and in-context learning (ICL) recommender frameworks. Beyond conducting membership-
inference attacks (MIAs) to expose private interactions, a promising future direction is the development of privacy-
risk scoring mechanisms that quantify the sensitivity of individual interactions. With such scores, companies could
proactively identify which user records pose high privacy risks and trigger targeted protective measures or the
unlearning of recommendations. Further, more sophisticated MIAs may be designed by monitoring training signals
(e.g., loss trajectories, prediction logits, confidence scores, and embedding drift) at the individual-interaction level and
mapping them to privacy-risk indicators in large-language-model-powered recommendation systems.

6.3 Relationship between user-level and interaction-level MIAs

Despite substantial progress in understanding user-level privacy risks, several open questions remain. One fundamental
uncertainty concerns the relationship between user-level and interaction-level privacy: is a user’s overall privacy
exposure simply the average of their interaction-level risks, or do certain interactions contribute disproportionately to
that exposure? In particular, long-tail interactions—such as those involving niche items or infrequent behaviors—may
reveal more distinctive user traits and thus contribute more to overall privacy leakage than interactions with popular
items. Understanding how to quantify, weight, and aggregate these heterogeneous privacy contributions remains an
open research challenge. Addressing these questions will not only advance theoretical understanding of user privacy
composition but also guide the design of more precise and adaptive privacy protection mechanisms in RecSys.

6.4 New dimension of attack targets: social-level MIAs

Unlike user-level and interaction-level privacy threats, the risk posed by users’ social relationships introduces a novel
vantage point on the serious privacy dangers inherent in modern RecSys, especially on social media. Current work
largely limits itself to detecting whether two users share a social connection (e.g., mutual following, friendship, or
‘likes’). In real-world settings, however, a more meaningful dimension of social privacy lies in the private nature of
those connections – for example, relationships with close friends or family members. A public celebrity follow may
appear innocuous, but the inference that a user is connected to a close friend or family member potentially exposes far
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greater personal risk. Thus, a promising future direction is the formulation of more granular social-relation membership
inference attacks (MIAs) and the development of corresponding defenses that protect fine-grained user-pair social
privacy without degrading recommendation utility.

6.5 Attacks on emerging RecSys models

While the membership inference attack (MIA) community has made considerable progress in studying privacy breaches
across different RecSys models, several critical gaps remain. First, research on Federated RecSys is still in its infancy.
The existing single study is far from sufficient to capture the breadth of potential vulnerabilities, motivating further
exploration of privacy risks and defenses in diverse FL-RecSys architectures. In particular, understanding how user–item
embeddings, communication compression, and personalized aggregation strategies influence privacy leakage remains an
open question. Second, social-level privacy risks in graph-based Federated RecSys present a promising yet underexplored
direction. In such settings, an adversary might exploit graph structures, message-passing mechanisms, or aggregation
updates to infer social connections, collaborative behaviors, or sensitive relational patterns among users. Investigating
privacy-preserving graph aggregation and robust communication protocols is therefore essential to strengthen privacy
guarantees in future graph Federated RecSys.

On the centralized side, privacy research in large language model–based RecSys (LLM4Rec) and multimodal RecSys
(MM-RecSys) remains limited. For LLM4Rec, examining privacy risks arising from large models’ inference, general-
ization, and memorization capabilities is particularly important, as these models may inadvertently memorize user
interactions or reveal training data through generated outputs. Meanwhile, MM-RecSys introduces heterogeneous
data modalities—including images, text, and speech—which not only amplify user privacy exposure but also raise new
concerns regarding intellectual property and content ownership.

Understanding these emerging privacy risks and designing principled defense mechanisms at both model and
system levels are essential for building a transparent, accountable, and trustworthy RecSys. Proactively addressing such
challenges will be key to fostering user trust and ensuring the sustainable development of privacy-preserving RecSys in
both academia and industry.

6.6 Tradeoffs in defense methods

Designing defenses against MIAs in RecSys necessarily involves balancing privacy protection against utility (recom-
mendation quality). Different defense strategies yield different trade-offs, and understanding these trade-offs is critical
for evaluating which approaches are viable in practice.

The utility–privacy tradeoff is the fundamental constraint in privacy-preserving methods. Any method that seeks to
hide which users contributed to the training data must avoid degrading the usefulness of recommendations too much –
otherwise, the system loses its main purpose. Differential Privacy (DP) offers a theoretically rigorous foundation. By
adding controlled noise to the model during training (or to outputs after training), DP can formally bound the privacy
risk and provide a quantifiable privacy guarantee. However, this guarantee comes at a cost: the added noise typically
reduces model accuracy, often substantially – especially for recommendation tasks, which are already sensitive to small
perturbations. Because of this noise-induced utility loss, adopting DP in practical RecSys remains challenging. Other
proactive methods, such as regularization and popularity randomization, attempt to reduce model memorization or
overfitting to reduce the risk of MIA. These methods are easy to deploy, mitigate some privacy risks, and may reduce
less model utility. However, they do not come with formal privacy guarantees. Their effectiveness of protection depends
heavily on assumptions about attacker’s prior knowledge, and may still incur non-trivial utility loss.
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Post-hoc, e.g., unlearning, methods are appealing in practice. They fully preserve utility at the deployment time,
while responding to users’ requests later to conform privacy laws. This makes them attractive for practitioners, who
cannot tolerate large accuracy drops. Recent approaches in machine unlearning argue that unlearning can mitigate
MIAs while preserving more model utility than proactive methods like DP. Nevertheless, these approaches come with
their own challenges: computational overhead (e.g., unlearning may require bookkeeping training data information and
significant parameter adjustments; privacy risk estimation methods are still very expensive to deploy), complexity in
implementation, and auditing the unlearning result [19].

7 Conclusion

Due to wide deployment of RecSys, privacy threats and leakage in RecSys can generate enormous impacts on individuals’
everyday life. We present a comprehensive review of membership inference attacks on RecSys to cover the recent
advances in this new research domain. We propose a taxonomy that organizes existing attacks, explain why and how
they succeed under common RecSys settings, and summarize standard evaluation protocols, metrics, and defense
strategies. We then discuss open challenges for both attacks and defenses and outline promising directions for future
research. Our goal is to provide a coherent foundation for subsequent work on privacy in RecSys.
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